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1. INTRODUCTION

Beams represent fundamental structural components in many engineering applications,
and shape functions are essential for the finite element discretization of such structures.
Przemeniecki [1] derived explicit expressions for the shape functions of two-dimensional
Timoshenko and three-dimensional Euler–Bernoulli (EB) beam elements. Note that for
the three-dimensional EB element presented in reference [1], a change of sign is required in
those entries of the third column of the shape function matrix which correspond to the
twist terms. Since that pioneering work, there does not appear to have been any attempt to
extend these results to a three-dimensional Timoshenko beam element, and it is the
purpose of this note to fill this gap in the literature.

2. FINITE ELEMENT DISCRETIZATION

Consider a typical two-node three-dimensional beam element of length l; where each
node has six degrees of freedom. The nodal displacement vector {e} defined with respect to
the element axes is denoted by

feg12�1¼ u1 v1 w1 yx1 yy1 yz1 u2 v2 w2 yx2 yy2 yz2

� �T
; ð1Þ

where ðu1; u2Þ are the nodal axial displacements in the x-direction, and ðv1; v2Þ and
ðw1; w2Þ are the translational displacements in the y- and z-directions, respectively,
ðyx1; yx2Þ are the torsional displacements about the x-axis, and ðyy1; yy2Þ and ðyz1; yz2Þ
are the rotational displacements in the ðxzÞ- and ðxyÞ-planes, respectively.

According to the standard finite element procedure, the elastic deformation of an
arbitrary point of the beam element can be expressed as

fdg ¼ ½N �feg; ð2Þ
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where fdg represents the elastic deformation vector of the beam element and ½N � is the
matrix of shape functions used to model its deformations. Note that the shape functions
are spatially dependent while the nodal displacement vector is time dependent.
Equation (2) is quite general and is valid for any form of shape functions ½N � used to
model the beam elements. The shape functions used for translational and rotational
bending deformation are the conventional cubic Hermitian polynomials that incorporate,
in addition to the continuity and completeness conditions, shear deformation parameters
that account for the effects of shear. The shape functions for torsional and axial
deformation are linear, and are included for completeness.

3. THE DISPLACEMENT FIELD

Timoshenko beam theory (TBT) is applied when the cross-sectional dimensions of the
beam are not small compared to its length and/or when higher bending modes are
required. The kinematic relations for a three-dimensional beam undergoing axial,
torsional and bending deformations in the ðxyÞ- and ðxzÞ-plane can be expressed as

U ¼ u 	 y
@v

@x

� �
	 z

@w

@x

� �
;

V ¼ 	zyx þ v;

W ¼ yyx þ w;

ð3Þ

where the translations ðv; wÞ consist of contributions ðvb; wbÞ and ðvs; wsÞ due to bending
and transverse shear, that is

v ¼ vb þ vs; w ¼ wb þ ws: ð4; 5Þ
The relationships between total slope, bending rotation and transverse shear are

@v

@x
¼ @vb

@x
þ @vs

@x
¼ yz þ gxy; ð6Þ

@w

@x
¼ @wb

@x
þ @ws

@x
¼ 	yy þ gxz; ð7Þ

where gxy and gxz are shear strains in the ðxyÞ- and ðxzÞ-planes, respectively.
The two rotations ðyy; yzÞ are related to the bending deformations ðvb; wbÞ by the
expressions

yz ¼
@vb

@x
; yy ¼ 	@wb

@x
: ð8; 9Þ

Note that axial warping displacement during torsion is ignored.

4. DERIVATION OF SHAPE FUNCTIONS

Shape function matrices for axial and torsional deformation, ½N a� and ½N yx
�; can be

found in any elementary text, and are given by

½N aðxÞ� ¼ ½N yx
ðxÞ� ¼ ½ð1 	 xÞ x�; ð10Þ

where x ¼ x=l is the dimensionless axial co-ordinate. Shape functions for bending
deformation in the ðxyÞ-plane are derived as follows: the translational deformation vðxÞ at
an arbitrary location x is expressed as

vðxÞ ¼ a0 þ a1x þ a2x2 þ a3x3 ð11Þ
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or in matrix form as

vðxÞ ¼ ½v�fajg; ð12Þ

where

½v� ¼ ½ 1 x x2 x3 � ð13Þ

and

fajg ¼ ½ a0 a1 a2 a3 �T: ð14Þ

The shear strain is assumed to be independent of the element axial co-ordinate x; in
accordance with reference [2], i.e., constant along the finite element

gxy ¼ const: ¼ g0: ð15Þ

The bending moment Mz and the shearing force Qy are related by

dMz

dx
	 Qy ¼ 0 ð16Þ

and the moment–curvature relationship is

Mz ¼ 	EIzz

@yz

@x
; ð17Þ

where Izz is the second moment of area about the z-axis; the shear force is related to the
transverse shear strain by

Qy ¼ ky G Agxy: ð18Þ

In the above, ky is the shear correction factor that accounts for the non-uniform
distribution of the shear stress over the cross-section A; E is the modulus of elasticity, and
G is the shear modulus. The slope due to bending can be obtained by using equations (6),
(13) and (15), that is

yz ¼ a1 þ 2a2x þ 3a3x2 	 g0: ð19Þ

Taking the derivative of yz with respect to x and substituting it into equation (17) yields

Mz ¼ 	EIzzð2a2 þ 6a3xÞ: ð20Þ

Taking the derivative of Mz with respect to x and substituting into equation (16) along
with equations (15) and (18) yields

	6EIzza3 	 kyGAg0 ¼ 0; ð21Þ

from which

g0 ¼ 	6ð EIzz

kyGA
Þa3 ¼ 	6Lz a3; ð22Þ

where

Lz ¼
EIzz

kyGA
: ð23Þ

Substitute equation (23) into the expression for yz; to give

yz ¼ a1 þ 2a2x þ ð3x2 þ 6LzÞa3: ð24Þ
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To express the coefficients aj in terms of the bending deformations and slopes, the
following boundary conditions must be satisfied:

vð0Þ ¼ v1 and vðlÞ ¼ v2;

yzð0Þ ¼ yz1 and yzðlÞ ¼ yz2

ð25Þ

and applying these to equations (11) and (24) gives

vð0Þ ¼ a0 ¼ v1;

yzð0Þ ¼ a1 þ 6Lza3 ¼ yz1;

vðlÞ ¼ a0 þ a1l þ a2l2 þ a3l3 ¼ v2;

yzðlÞ ¼ a1 þ 2a2l þ 3l2 þ 6Lz

� �
a3 ¼ yz2:

ð26Þ

In matrix form, this can be written as

v1

yz1

v2

yz2

8>>><
>>>:

9>>>=
>>>;

¼

1 0 0 0

0 1 0 6Lz

1 l l2 l3

0 1 2l ð3l2 þ 6LzÞ

2
6664

3
7775

a0

a1

a2

a3

8>>><
>>>:

9>>>=
>>>;

ð27Þ

or in more compact form

fdg ¼ ½A�fajg; ð28Þ

from which

fajg ¼ ½A�	1fdg: ð29Þ

Solving for fajg gives

a0 ¼ v1; ð30Þ

a1 ¼ %FFz 	1

l
Fzv1 þ 1 þ Fz

2

� �
yz1 þ

1

l
Fzv2 	

Fz

2
yz2

� �
; ð31Þ

a2 ¼ %FFz 	3v1

l2
	 1

l
2 þ Fz

2

� �
yz1 þ

3v2

l2
	 1

l
1 	 Fz

2

� �
yz2

� �
; ð32Þ

a3 ¼ %FFz
2v1

l3
þ yz1

l2
	 2v2

l3
þ yz2

l2

� �
; ð33Þ

where

%FFz ¼
1

ð1 þ FzÞ
ð34Þ

and

Fz ¼
12Lz

l2
¼ 12EIzz

kyGAl2
ð35Þ
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is the shear deformation parameter that represents the ratio between bending and shear
stiffnesses. Substituting the values of aj into the expression of vðx ¼ x=lÞ and simplifying,
one obtains

vðxÞ ¼ %FFzð1 	 3x2 þ 2x3 þ Fzð1 	 xÞÞv1 þ l %FFz x	 2x2 þ x3 þ Fz

2
ðx	 x2Þ

� �
yz1

þ %FFzð3x2 	 2x3 þ FzxÞv2 þ l %FFz 	x2 þ x3 þ Fz

2
	xþ x2
� �� �

yz2: ð36Þ

Hence, vðxÞ can be written in the form

vðxÞ ¼ N v1
v1 þ N v2

mz1 þ N v3
v2 þ N v4

mz2; ð37Þ

where

N v1
¼ %FFzð1 	 3x2 þ 2x3 þ Fzð1 	 xÞÞ;

N v2
¼ l %FFz x	 2x2 þ x3 þ Fz

2
ðx	 x2Þ

� �
;

N v3
¼ %FFzð3x2 	 2x3 þ FzxÞ;

N v4
¼ l %FFz 	x2 þ x3 þ Fz

2
ð	xþ x2Þ

� �
:

ð38Þ

Similarly, substitute aj into the equation for yzðxÞ to get

yzðxÞ ¼ 6 %FFz

l
ð	xþ x2Þv1 þ %FFzð1 	 4xþ 3x2 þ Fzð1 	 xÞÞyz1

þ 6 %FFz

l
ðx	 x2Þv2 þ %FFzð	2xþ 3x2 þ FzxÞyz2:

ð39Þ

Hence, yzðxÞ can be written in the form

mzðxÞ ¼ N mz1
v1 þ N mz2

mz1 þ N mz3
v2 þ N mz4

mz2; ð40Þ

where

N mz1
¼ 6 %FFz

l
ð	xþ x2Þ;

N mz2
¼ %FFzð1 	 4xþ 3x2 þ Fzð1 	 xÞÞ;

N mz3
¼ 	6 %FFz

l
ð	xþ x2Þ;

N mz4
¼ %FFzð	2xþ 3x2 þ FzxÞ:

ð41Þ

Shape functions for bending in the ðxzÞ-plane are obtained in a similar manner; the
bending slope yy is given by equation (7) while the shear deformation parameter is

Fy ¼ 12EIyy

kzGAl2
ð42Þ
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and

%FFy ¼ 1

ð1 þ FyÞ
: ð43Þ

The shape functions corresponding to bending in the xzð Þ-plane can then be
written as

N w1
¼ %FFyð1 	 3x2 þ 2x3 þ Fyð1 	 xÞÞ;

N w2
¼ 	l %FFyðx	 2x2 þ x3 þ Fy

2
ðx	 x2ÞÞ;

N w3
¼ %FFyð3x2 	 2x3 þ FyxÞ;

N w4
¼ 	l %FFyð	x2 þ x3 þ Fy

2
ð	xþ x2ÞÞ

ð44Þ

and the corresponding bending slope shape functions are

N my1
¼ 6 %FFy

l
ð	xþ x2Þ;

N my2
¼ 	 %FFyð1 	 4xþ 3x2 þ Fyð1 	 xÞÞ;

N my3
¼ 	6 %FFy

l
ð	xþ x2Þ;

N my4
¼ 	 %FFyð	2xþ 3x2 þ FyxÞ:

ð45Þ

By virtue of equations (10), (38), (41), (44) and (45), the kinematic relations given by
equation (3) are now expressed as

U ¼ð1 	 xÞu1 	 6 %FFzð	xþ x2ÞZv1 	 6 %FFyð	xþ x2Þzw1

þ l %FFyð1 	 4xþ 3x2 þ Fyð1 	 xÞÞzyy1 	 l %FFzð1 	 4xþ 3x2 þ Fzð1 	 xÞÞZyz1

þ xu2 	 6 %FFzðx	 x2ÞZv2 	 6 %FFyðx	 x2Þzw2

þ l %FFyð	2xþ 3x2 þ FyxÞzyy2 	 l %FFzð	2xþ 3x2 þ FzxÞZyz2;

V ¼ %FFzð1 	 3x2 þ 2x3 þ Fzð1 	 xÞÞv1

	 lzð1 	 xÞyx1 þ l %FFz x	 2x2 þ x3 þ Fz

2
ðx	 x2Þ

� �
yz1

þ %FFzð3x2 	 2x3 þ FzxÞv2 	 lzxyx2 þ l %FFz 	x2 þ x3 þ Fz

2
ð	xþ x2Þ

� �
yz2;

W ¼ %FFyð1 	 3x2 þ 2x3 þ Fyð1 	 xÞÞw1

þ lZð1 	 xÞyx1 	 l %FFy x	 2x2 þ x3 þ Fy

2
ðx	 x2Þ

� �
yy1

þ %FFyð3x2 	 2x3 þ FyxÞw2 þ lZxyx2 	 l %FFy 	x2 þ x3 þ Fy

2
ð	xþ x2Þ

� �
yy2; ð46Þ
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where Z ¼ y=l and z ¼ z=l are dimensionless co-ordinates in the y- and z-directions
respectively. In matrix form, this can be written as

fdg3�1 ¼ U V W
� �T¼ ½N �3�12feg12�1 ð47Þ

These results are summarized in the matrix of the shape functions, ½N �; shown in
Appendix A. If the shear deformation parameters Fy and Fz are neglected, then
½N � reduces to the three-dimensional Euler–Bernoulli beam shape function derived in
reference [1], where a sign change is required in the fourth and tenth entries of the third
column of the shape function matrix, which correspond to the twist terms.
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0 0

2x3 þ Fzð1 	 xÞÞ 0

0 %FFyð1 	 3x2 þ 2x3 þ Fyð1 	 xÞÞ
	 xÞlz ð1 	 xÞlZ

0 	l %FFy x	 2x2 þ x3 þ Fy

2
ðx	 x2Þ

� �

x3 þ Fz

2
ðx	 x2Þ

�
0

0 0

2x3 þ FzxÞ 0

0 %FFyð3x2 	 2x3 þ FyxÞ
xlz xlZ

0 	l %FFy 	x2 þ x3 	 Fy

2
ðx	 x2Þ

� �

3 	 Fz

2
ðx	 x2Þ

�
0

3
77777777777777777777777777777777775

;

DIX A

shenko beam element:

L
E
T
T
E
R

S
T
O

T
H

E
E
D

IT
O

R
4
8
0

½N�T ¼

ð1 	 xÞ
6 %FFzðx	 x2ÞZ %FFzð1 	 3x2 þ
6 %FFyðx	 x2Þz

0 	ð1

l %FFyð1 	 4xþ 3x2 þ Fyð1 	 xÞÞz

	l %FFzð1 	 4xþ 3x2 þ Fzð1 	 xÞÞZ l %FFz x	 2x2 þ
�

x

6 %FFzð	xþ x2ÞZ %FFzð3x2 	
6 %FFyð	xþ x2Þz

0 	

l %FFyð	2xþ 3x2 þ FyxÞz

	l %FFzð	2xþ 3x2 þ FzxÞZ l %FFz 	x2 þ x
�

2
66666666666666666666666666666666664

where %FFy ¼ 1=ð1 þ FyÞ and %FFz ¼ 1=ð1 þ FzÞ:

APPEN

Shape function matrix for the three-dimensional Timo
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